
Parallelizing Genetic Algorithms Project Report 

 

Raymond Chee 

 

Summary: 

This project explores the design space for parallelizing generic genetic 

algorithms. I implemented both a sequential and a parallel version of a genetic algorithm 

optimizing a simple fitness function and compared the performance between the two 

implementations. The parallel version targets the GPUs on the GHC machines. 

 

Background: 

Genetic algorithms are a class of optimization functions inspired by genetic 

evolution from biology. Each group of weights to optimize is called an individual of the 

population. The weights themselves are referred to as genes. A genetic algorithm 

proceeds as follows: First, the input population’s fitness is evaluated, where the fitness 

function takes a population and returns a numeric score for each individual that 

characterizes how “fit” the individual is. This is the value we are trying to optimize, so 

the exact details of the fitness function is application-specific. Then, we evolve the 

population over a fixed number of generations. Each generation produces a new 

population from the older parent population and evaluates the fitness of the new 

population. If the fitness of the population converges or otherwise meets some other 

stopping criteria, we can terminate early. 



Creating a new generation involves randomly choosing “parent” individuals to 

combine and form new children individuals. Parents with higher fitness scores are more 

likely to be chosen, which should drive the population to an optimal value. Combining 

parent individuals produces a new set of genes using a genetic operator applied to the 

old parents. A common example of a genetic operator is the crossover function, which 

chooses a position in the gene vector and copies each gene to the left of that position 

from the first parent into the child, and copies the genes to the right of that position from 

the second parent into the child. Finally, the child’s genes could randomly “mutate”, 

which involves flipping a bit in the gene so that the children are not simply a 

combination of the parent’s genes. The random initialization and mutation feature in 

genetic algorithms allow it to avoid converging onto local optimas, which many other 

optimization algorithms tend to suffer from. 

The key data structures in this algorithm are the arrays of individuals and their 

gene arrays. In my implementation, I defined individuals as an array of bits, where each 

gene is a single bit in the array. I used a fitness function that simply adds the values of 

the individual’s genes together, but the algorithm is agnostic to the particular fitness 

function used since it doesn’t try to parallelize its evaluation. I chose the crossover 

function as described in the previous paragraph as my genetic operator, and the 

method I used to randomly choose parents is to weight each individual by its fitness and 

randomly sample from this weighted distribution. 

 

 



With these parameters, the workload is the following: 

- For each generation: 

- Create a prefix sum array of the fitnesses of the population 

- Create the children array: 

- Choose 2 random value between 0 and the total fitness of 

the population and find the indices of the largest values in 

the array that’s less than the randomly chosen values. These 

are the parents of the children 

- Perform the crossover operation on the parents and for each 

gene in the child, randomly flip the bit with some probability. 

- For each child, evaluate their fitness (sum all of their genes 

together). 

Creating the children array and evaluating fitnesses is trivially parallelizable since 

the children are not related to each other. However, creating a prefix sum array is a 

sequential task by nature. Additionally, the nested format of the data structures makes it 

difficult to directly port over to the GPU. 

Approach: 

Data structure-wise, I ended up flattening the nested gene array into a single, 

large array, and made the individuals store the starting index in this large array instead 

of a pointer to its own array. The first part of my approach involves using the exclusive 

scan algorithm to produce the prefix sum array. To create the children array, I divided 

the children array into chunks, and had each thread create their subset of the children. 



Similarly, for the fitness evaluation step, I divided the set of children between threads 

and had each thread run the fitness evaluation function for each child. Because each 

step depends on the previous step, I synchronized the threads after each step 

completed. Additionally, since synchronization between blocks was required for 

correctness, and the version of CUDA installed on the GHC machine does not support 

grid synchronization, this limited my parallelism to having a single block and 512 

threads in that block. 

A previous iteration of this code parallelized everything except for the prefix sum. 

In this version, the time it took to execute was comparable to the sequential version, 

achieving only a 1.11x speedup. 

My current implementation implements this in a single kernel launch. Previous 

iterations involved multiple kernel launches for each step of the algorithm, but the 

overhead from these kernel launches caused my code to run too slowly to terminate in a 

reasonable amount of time. However, this was before I implemented the exclusive scan, 

so if the runtime characteristics of this approach with exclusive scan would improve. 

Results: 

I measured performance by measuring the time it took for the main algorithm to run in 

both the sequential and GPU versions of the code. This excludes setup time. Then, I 

computed the speedups that the GPU version achieved relative to the sequential CPU 

version. To produce these results, I ran the code on ghc28.ghc.andrew.cmu.edu. 

 





 



With 512 threads, I did not get a 512x speedup. The differences were likely due to the 

memory bandwidth to copy results back and forth, as well as the synchronization 

required between threads. 


