
Parallelizing Genetic Algorithms Project Checkpoint 
 

Raymond Chee 
New URL:​​ ​https://rjchee.github.io/parallel_genetic_algorithms/ 
 
Updates: 

We implemented a sequential version of a genetic algorithm which maximizes 
the total fitness of an array of chromosomes. Chromosomes are defined as an array of 
genes, which are 0-1 values. During crossover, children chromosomes for the next 
generation are defined as a random mixture of two randomly chosen parents’ genes, 
and there is a 5% chance for each of the child’s genes to be flipped. We also added 
some code to time this process. 

I also began implementing a parallel version of this code in CUDA, but 
unfortunately there are still some bugs I need to fix, so I don’t have any measurements 
for that. The parallelization approach I plan to use is to currently just parallelize the 
fitness evaluation loop, which should be trivial since no member of the population 
affects the fitness of another with the current fitness function. More thought needs to be 
put into extracting parallelization from the crossover step, since the algorithm to 
randomly choose parents to cross over based on the weighted probability of the 
chromosome’s fitness is very sequential right now. 
 
New schedule: 
November 19-21: Fix bugs in CUDA code. 
November 22-25: Figure out and implement ways to parallelize the crossover 
November 26-29: Explore variations on the sequential genetic algorithm using different 
genetic operators and convergence tests 
November 30-December 2: Write sequential versions of the variations 
December 3-5: Parallelize these variations: 
December 6-9: Find an interesting fitness function/real world example for the genetic 
algorithm and implement/parallelize that 
December 10-13: Write a version of the genetic algorithm using another framework, or if 
I’m behind schedule, catch up 
December 14-16: Compile graphs and make the poster 
 
Goals: 

● Produce graphs which convey how much parallelism can be achieved with 
different approaches to implementing genetic algorithms 

● Parallelize a useful application of genetic algorithms and show speedups. 
● Compare the speedups between CUDA and another framework (nice to have) 

https://rjchee.github.io/parallel_genetic_algorithms/


 
Preliminary results: 
Ideally, these graphs would have the an extra line showing the performance of a CUDA 
implementation, but I couldn’t fix the bugs in time. These graphs would show how 
changing the two parameters to the fitness function affects execution time for both 
sequential and parallel implementations. For serial, it’s clearly linear, but it would 
probably be more interesting for the parallel version. 

 



 
 


